Fix a commutative ring R. Given any n \geq 0, we have an endomorphism functor on \mathrm{Mod}_{R} given by M \mapsto M^{\otimes n}. Note that M^{\otimes 0} = R and given an R-module map \varphi : M \rightarrow N, the map M^{\otimes n} \rightarrow N^{\otimes n} is determined by x_{1} \otimes \cdots \otimes x_{n} \mapsto \varphi(x_{1}) \otimes \cdots \otimes \varphi(x_{n}). We write \mathrm{Sym}^{n}(M) := \frac{M^{\otimes n}}{(x_{1} \otimes \cdots \otimes x_{n} - x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)})_{\sigma \in S_{n}}}, and note that we also get an endomorphism functor on \mathrm{Mod}_{R} given by M \mapsto \mathrm{Sym}^{n}(M). We write \bigwedge^{n}M := \frac{M^{\otimes n}}{(x_{1} \otimes \cdots \otimes x_{n} : x_{i} = x_{j} \text{ for some } i \neq j)}, which also gives a functor. If (the image of) 2 is invertible in R, then the ideal in the definition the n-the exterior power can be replaced by (x_{1} \otimes \cdots \otimes x_{n} - \mathrm{sgn}(\sigma)x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)})_{\sigma \in S_{n}}. Note that there are evident universal properties associated to constructions of M^{\otimes n}, \mathrm{Sym}^{n}(M), and \bigwedge^{n}M.
Symmetric and alternating tensors. Given a module M over R, the n-tensor is an element in M^{\otimes n}. Note that S_{n} acts on M^{\otimes n} by \sigma \cdot (x_{1} \otimes \cdots \otimes x_{n}) := x_{\sigma^{-1}(1)} \otimes \cdots \otimes x_{\sigma^{-1}(n)} for each \sigma \in S_{n}. An n-tensor t \in M^{\otimes n} is
- symmetric if \sigma t = t for all \sigma \in S_{n};
- alternating if \sigma t = \mathrm{sgn}(\sigma)t for all \sigma \in S_{n}.
Given an n-tensor t, we define S(t) := \sum_{\sigma \in S_{n}}\sigma t, and A(t) := \sum_{\sigma \in S_{n}}\mathrm{sgn}(\sigma)\sigma t. It is not difficult to check that S(t) = n!t if t is an n-symmetric tensor and A(t) = n!t if t is an n-alternating tensor. Denote by S(M^{\otimes n}) the submodule of symmetric n-tensors and A(M^{\otimes n}) the submodule of alternating n-tensors in M^{\otimes n}.
Symmetric powers are symmetric tensors. Let n! be invertible in R. Then the image of the map (n!)^{-1}S : M^{\otimes n} \rightarrow M^{\otimes n} is S(M^{\otimes n}), and its kernel is (x_{1} \otimes \cdots \otimes x_{n} - x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)})_{\sigma \in S_{n}}. Thus, this map induces an isomorphism \mathrm{Sym}^{n}(M) \simeq S(M^{\otimes n}) such that x_{1} \otimes \cdots \otimes x_{n} \mapsto x_{1} \otimes \cdots \otimes x_{n}.
Proof. Since n! is a unit in R, we have (n!)^{-1}S(t) = t for all t \in S(M^{\otimes n}), so the image of (n!)^{-1}S is S(M^{\otimes n}). It is clear that x_{1} \otimes \cdots \otimes x_{n} - x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)} is in the kernel for any \sigma \in S_{n}, so we may define the desired map \mathrm{Sym}^{n}(M) \rightarrow S(M^{\otimes n}). To check it is an isomorphism, let t be any n-tensor such that (n!)^{-1}S(t) = (n!)^{-1}\sum_{\sigma \in S_{n}}\sigma t = 0. We have t = t - \frac{1}{n!}\sum_{\sigma \in S_{n}}\sigma t = \frac{1}{n!}\sum_{\sigma \in S_{n}}\left(t - \sigma t \right), but the image of t - \sigma t is 0 in \mathrm{Sym}^{n}(M), so the image of t must be 0 as well. \Box
Exterior powers are alternating tensors. Let n! be invertible in R. Then the image of the map (n!)^{-1}A : M^{\otimes n} \rightarrow M^{\otimes n} is A(M^{\otimes n}), and its kernel is (x_{1} \otimes \cdots \otimes x_{n} : x_{i} = x_{j} \text{ for some } i \neq j). Thus, this map induces an isomorphism \bigwedge^{n}M \simeq A(M^{\otimes n}) such that x_{1} \wedge \cdots \wedge x_{n} \mapsto x_{1} \otimes \cdots \otimes x_{n}.
Proof. Since n! is a unit in R, we have (n!)^{-1}A(t) = t for all t \in A(M^{\otimes n}), so the image of (n!)^{-1}A is A(M^{\otimes n}). It is clear that x_{1} \otimes \cdots \otimes x_{n} is in the kernel whenever we have some i \neq j with x_{i} = x_{j}, by using the transpose switching i and j. Hence, we may define the desired map \bigwedge^{n}M \rightarrow A(M^{\otimes n}). To check it is an isomorphism, let t be any n-tensor such that (n!)^{-1}A(t) = (n!)^{-1}\sum_{\sigma \in S_{n}}\mathrm{sgn}(\sigma)\sigma t = 0. We have t = t - \frac{1}{n!}\sum_{\sigma \in S_{n}} \mathrm{sgn}(\sigma) \sigma t = \frac{1}{n!}\sum_{\sigma \in S_{n}}\left(t - \mathrm{sgn}(\sigma)\sigma t \right), but the image of t - \mathrm{sgn}(\sigma)\sigma t is 0 in \bigwedge^{n}M, because 0 = (x + y) \wedge (x + y) = x \otimes y + y \otimes x so that x \otimes y = - y \otimes x. This implies that the image of t is 0 in \bigwedge^{n}M. \Box
Geometric tensors. Now, let M be a free R-module with finite rank m. Fix a basis e_{1}, \dots, e_{m} \in M. Then we have an R-module isomorphism M \overset{\sim}{\longrightarrow} M^{\vee} = \mathrm{Hom}_{R}(M, R) given by e_{j} \mapsto e_{j}^{\vee}. This gives us an R-module isomorphism M^{\otimes n} \overset{\sim}{\longrightarrow} (M^{\otimes n})^{\vee} given by e_{j_{1}} \otimes \cdots \otimes e_{j_{n}} \mapsto (e_{j_{1}} \otimes \cdots \otimes e_{j_{n}})^{\vee}. We have (M^{\otimes n})^{\vee} = \mathrm{Hom}_{R}(M^{\otimes n}, R) \simeq \mathrm{Mult}_{R}(M^{n}, R) given by (e_{j_{1}} \otimes \cdots \otimes e_{j_{n}})^{\vee} \mapsto (e_{j_{1}}^{\vee}, \dots, e_{j_{n}}^{\vee}). We call the elements in \mathrm{Mult}_{R}(M^{n}, R) geometric n-tensors of M.
Remark. The terminology is non-standard.
We have M^{\otimes n} \simeq \mathrm{Mult}_{R}(M^{n}, R) given by (e_{j_{1}} \otimes \cdots \otimes e_{j_{n}})^{\vee} \mapsto (e_{j_{1}}^{\vee}, \dots, e_{j_{n}}^{\vee}). We may define the product \mathrm{Mult}_{R}(M^{l}, R) \times \mathrm{Mult}_{R}(M^{n}, R) \rightarrow \mathrm{Mult}_{R}(M^{l+n}, R) by concatenation (e_{i_{1}}^{\vee}, \dots, e_{i_{l}}^{\vee}) \cdot (e_{j_{1}}^{\vee}, \dots, e_{j_{n}}^{\vee}) = (e_{i_{1}}^{\vee}, \dots, e_{i_{l}}^{\vee}, e_{j_{1}}^{\vee}, \dots, e_{j_{n}}^{\vee}), which is compatible with the product M^{\otimes l} \times M^{\otimes n} \rightarrow M^{\otimes (l + n)} given by the tensor product. Note that given geometric l-tensor f and n-tensor g, we have (f \cdot g)(x_{1}, \dots, x_{l+n}) = f(x_{1}, \dots, x_{l}) g(x_{l+1}, \dots, x_{l+n}). Considering the correspondence e_{j_{1}} \otimes \cdots \otimes e_{j_{n}} \leftrightarrow (e_{j_{1}}^{\vee}, \cdots, e_{j_{n}}^{\vee}), we may consider the action of S_{n} on \mathrm{Mult}_{R}(M^{n}, R) given by \sigma \cdot (e_{j_{1}}^{\vee}, \cdots, e_{j_{n}}^{\vee}) := (e_{\sigma^{-1}(j_{1})}^{\vee}, \cdots, e_{\sigma^{-1}(j_{n})}^{\vee}). Note that \begin{align*}(\sigma \cdot (e_{j_{1}}^{\vee}, \cdots, e_{j_{n}}^{\vee}))(x_{1}, \dots, x_{n}) &= (e_{\sigma^{-1}(j_{1})}^{\vee}, \cdots, e_{\sigma^{-1}(j_{n})}^{\vee})(x_{1}, \dots, x_{n}) \\ &= (e_{j_{1}}^{\vee}, \cdots, e_{j_{n}}^{\vee})(x_{\sigma(1)}, \dots, x_{\sigma(n)}),\end{align*} because if x_{i} = e_{\sigma^{-1}(i)}, then x_{\sigma(i)} = e_{i}. Thus, for f \in \mathrm{Mult}_{R}(M^{n}, R), we have (\sigma f)(x_{1}, \dots, x_{n}) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)}). We note that under the isomorphism M^{\otimes n} \simeq \mathrm{Mult}_{R}(M, R), the geometric n-tensor f correponds to
- a symmetric n-tensor if \sigma f = f for all \sigma \in S_{n};
- an alternating n-tensor if \sigma f = \mathrm{sgn}(\sigma)f for all \sigma \in S_{n}.
If f corresponds to a symmetric (resp. alternating) n-tensor, we say f is symmetric (resp. alternating). The set of symmetric geometric n-tensors is denoted as S_{R}(M^{n}, R), and the set of alternating geometric n-tensors is denoted as A_{R}(M^{n}, R), both of which are R-submodules of \mathrm{Mult}_{R}(M^{n}, R). The discussions above imply the following:
Theorem. If n! is invertible in R, then we have \mathrm{Sym}^{n}(M) \simeq S_{R}(M^{n}, R) given by e_{i_{1}} \otimes \cdots \otimes e_{i_{n}} \mapsto e_{i_{1}}^{\vee} \otimes \cdots \otimes e_{i_{n}}^{\vee} = (e_{i_{1}}^{\vee}, \dots, e_{i_{n}}^{\vee}), where for (f, g) \in \mathrm{Mult}_{R}(M^{r}, R) \times \mathrm{Mult}_{R}(M^{s}, R), we used the notation f \otimes g := f \cdot g, namely (f \otimes g)(x_{1}, \dots, x_{r+s}) := f(x_{1}, \dots, x_{r})g(x_{r+1}, \dots, x_{r+s}). Moreover, we have \bigwedge^{n}M \simeq A_{R}(M^{n}, R), given by e_{i_{1}} \wedge \cdots \wedge e_{i_{n}} \mapsto e_{i_{1}}^{\vee} \wedge \cdots \wedge e_{i_{n}}^{\vee} = (e_{i_{1}}^{\vee}, \dots, e_{i_{n}}^{\vee}), where for (f, g) \in \mathrm{Mult}_{R}(M^{r}, R) \times \mathrm{Mult}_{R}(M^{s}, R) (assuming r!, s! \in R^{\times}) we used the notation f \wedge g := \frac{A(f \otimes g)}{r!s!} := \frac{1}{r!s!} \sum_{\sigma \in S_{r + s}}\sigma (f \otimes g). That is, we have (f \wedge g)(x_{1}, \dots, x_{r+s}) := \frac{1}{r!s!}\sum_{\sigma \in S_{r+s}}f(x_{\sigma(1)}, \dots, x_{\sigma(r)})g(x_{\sigma(r+1)}, \dots, x_{\sigma(r+s)}). The whole posting was due to extract the following purpose of mine:
Corollary. Algebraic definitions of symmetric power and exterior power over characteristic 0 match with those of definitions in Chapter 3 of Tu's book.
No comments:
Post a Comment