Let S be any scheme. An S-scheme G is called a group scheme over S (or an S-group) if the functor h_{G} = \mathrm{Hom}_{\textbf{Sch}_{S}}(-, G) : \textbf{Sch}_{S}^{\mathrm{op}} \rightarrow \textbf{Set} factors as \textbf{Sch}_{S}^{\mathrm{op}} \rightarrow \textbf{Grp} \rightarrow \textbf{Set},
where the second functor is the forgetful functor.
This means that for each S-scheme T, the set G(T) = \mathrm{Hom}_{\textbf{Sch}_{S}}(T, G) has a group structure. In particular, we have the multiplication (set) map m_{T} : G(T) \times G(T) \rightarrow G(T)
and the inverse map i_{T} : G(T) \rightarrow G(T).
Moreover, both m_{T} and i_{T} are functorial in T. To see this, fix any S-scheme map \phi : T' \rightarrow T. The induced map \phi^{*} : G(T) \rightarrow G(T') is a group map, so we must have \phi^{*} \circ m_{T} = m_{T'} \circ \phi^{*},
which shows the functoriality of m_{-}. The functoriality of i_{-} holds for the same reason. Since i_{-} : h_{G} \rightarrow h_{G} is the map of functors, using the Yoneda embedding \textbf{Sch}_{S} \hookrightarrow \textbf{PSh}_{\textbf{Set}}(\textbf{Sch}_{S}) given by T \mapsto h_{T} = T(-), there is a unique S-scheme map i : G \rightarrow G that maps to i_{-} : G(-) \rightarrow G(-). We remark that this uniqueness is up to an isomorphism of S-schemes. Given any S-scheme T, we have i_{T} : G(T) \rightarrow G(T)
in \textbf{Set}, given by f \mapsto i \circ f. We need slightly more for the multiplication map. First, given any S-scheme T, we have G(T) \times G(T) \simeq (G \times_{S} G)(T)
given by (x, y) \mapsto (x, y), where the left-hand side means a pair of two S-scheme maps x, y : T \rightarrow G, while the right-hand side means the map (x, y) : T \rightarrow G \times_{S} G
of S-schemes induced by the fiber product. That is, if we denote by \pi_{1}, \pi_{2} : G \times_{S} G \rightarrow G two projections, then
- x = \pi_{1} \circ (x, y) and
- y = \pi_{2} \circ (x, y).
Given any S-scheme map \phi : T' \rightarrow T, we have
- x \circ \phi = \pi_{1} \circ (x, y) \circ \phi and
- y \circ \phi = \pi_{2} \circ (x, y) \circ \phi,
so (x, y) \circ \phi = (x \circ \phi, y \circ \phi), so we see that G(T) \times G(T) \simeq (G \times_{S} G)(T) is functorial in T. Hence, we may realize m_{-} as a map (G \times_{S} G)(-) \rightarrow G(-), and using the Yoneda embedding, we may find a unique S-scheme map m : G \times_{S} G \rightarrow G
mapping to m_{-}. We note that m_{T} : (G \times_{S} G)(T) \rightarrow G(T) is given by f \mapsto m \circ f, and if we look at m_{T} as a map G(T) \times G(T) \rightarrow G(T), the map is given by (x, y) \mapsto m \circ (x, y), where (x, y) on the right-hand side means the map G \rightarrow G \times_{S} G.
Since each G(T) = \mathrm{Hom}_{\textbf{Sch}_{S}}(T, G) is a group, we have the identity element e_{T} \in G(T) for any S-scheme T. Any S-scheme T comes with its structure map \pi_{T} : T \rightarrow S, and \pi_{T}^{*} : G(S) \rightarrow G(T) is a group map, so we must have e_{S} \mapsto e_{T}. This implies that e_{T} = e_{S} \circ \pi_{T} : T \rightarrow S \rightarrow G. We thus denote by e := e_{S} : S \rightarrow G, as we can recover any e_{T} from it for any S-scheme \pi_{T} : T \rightarrow S.
The fact that e_{T} is the identity of the group G(T) means that for any x \in G(T), we have m \circ (e_{T}, x) = x = m \circ (x, e_{T}).
In other words, we have m_{T}(e_{T}, x) =x = m_{T}(x, e_{T}), when we look at m_{T} as a map G(T) \times G(T) \rightarrow G(T). We can make this condition present in \textbf{Sch}_{S}. First, note that S(T) = \{\pi_{T}\}. Then we have the set map S(T) \rightarrow G(T) given by \pi_{T} \mapsto e_{T}, which gives e_{T} \times \mathrm{id}_{G(T)} : S(T) \times G(T) \rightarrow G(T) \times G(T)
given by (\pi_{T}, x) \mapsto (e_{T}, x). Given any S-scheme map \phi : T' \rightarrow T, we have \pi_{T} \circ \phi = \pi_{T'} and \phi_{T} \circ \phi = \phi^{*}(e_{T}) = e_{T'},
where the last equality uses that \phi^{*} : G(T) \rightarrow G(T') is a group map. We see that S(T') \times G(T') \rightarrow G(T') \times G(T') gives (\pi_{T} \circ \phi, x \circ \phi) = (\pi_{T'}, x \circ \phi) \mapsto (e_{T'}, x \circ \phi) = (e_{T} \circ \phi, x \circ \phi).
Hence, the map e_{T} \times \mathrm{id}_{G(T)} is functorial in T. Now, the property that e_{T} is the identity of G(T) is equivalent to saying that m_{T} \circ (e_{T} \times \mathrm{id}_{G(T)}) \circ \pi_{2,T} = \mathrm{id}_{G(T)} = m_{T} \circ (\mathrm{id}_{G(T)} \times e_{T}) \circ \pi_{2,T}
where the left-hand side is given by the following chain of the compositions G(T) \simeq S(T) \times G(T) \rightarrow G(T) \times G(T) \rightarrow G(T)
with \pi_{2,T} being the first functorial bijection in T given by the projection onto G(T). Note that the map e_{-} \times \mathrm{id}_{G(-)} : S(-) \times G(-) \rightarrow G(-) \times G(-) of functors corresponds to e \times_{S} \mathrm{id}_{G} : S \times_{S} G \rightarrow G \times_{S} G, and likewise \mathrm{id}_{G(-)} \times e_{-} corresponds to \mathrm{id}_{G} \times_{S} e. Therefore, saying that e_{T} is the identity element of G(T) for every T is equivalent to saying m \circ (e \times_{S} \mathrm{id}_{G}) \circ \pi_{2} = \mathrm{id}_{G} = m \circ (\mathrm{id}_{G} \times_{S} e) \circ \pi_{2},
which is often called the identity axiom for the group scheme G over S.
Now, let's think about associativity of G(T) given an S-scheme T. Note that the following are equivalent:
- (x \cdot y) \cdot z = x \cdot (y \cdot z) for all x, y, z \in G(T);
- m_{T} \circ (m_{T} \times \mathrm{id}_{G(T)}) = m_{T} \circ (\mathrm{id}_{G(T)} \times m_{T});
- m \circ (m \times_{S} \mathrm{id}_{G}) = m \circ (\mathrm{id}_{G} \times_{S} m).
The last condition is called the associative axiom for G.
Given g \in G(T), the inverse g^{-1} = i_{T}(g) satisfies m_{T}(g, i_{T}(g)) = e_{T} = m_{T}(i_{T}(g), g).
Giving such condition for all g \in G(T) is equivalent to saying that m_{T}(g, i_{T}(g)) = e_{T} = m_{T}(i_{T}(g), g),
which is equivalent to saying that m \circ (\mathrm{id}_{G}, i) = e \circ \pi_{T} = m \circ (i, \mathrm{id}_{G}).
This is called the inverse axiom for G.
Left multiplication map. Let G be an S-group. Given any g \in G(S), for any S-scheme \pi_{T} : T \rightarrow S, we have \pi_{T}^{*}(g) = g \circ \pi_{T} \ \in G(T). We then have the map l_{g, T} :G(T) \rightarrow G(T) given by x \mapsto (g \circ \pi_{T}) \cdot x = m_{T}(g \circ \pi_{T}, x), which is functorial in T because given any S-scheme map \phi : T' \rightarrow T, we have \phi^{*}(\pi_{T}^{*}(g) \cdot x) = \phi^{*}(\pi_{T}^{*}(g)) \cdot \phi^{*}(x) = (\pi_{T} \circ \phi)^{*}(g) \cdot \phi^{*}(x) = \pi_{T'}^{*}(g) \cdot \phi^{*}(x)
for all x \in G(T), which implies that \phi^{*} \circ l_{g,T} = l_{g,T'} \circ \phi^{*}. Thus, there must be a unique S-scheme map l_{g} : G \rightarrow G such that for any x \in G(T), we have l_{g} \circ x = l_{g, T}(x) \in G(T).
Since \pi_{T} = \pi_{G} \circ x = \pi_{T} and x = \mathrm{id}_{G} \circ x, we have (g \circ \pi_{G}, \mathrm{id}_{G}) \circ x : T \rightarrow G \times_{S} G,
so \begin{align*}l_{g, T}(x) &= m_{T}(g \circ \pi_{T}, x) \\ &= m \circ (g \circ \pi_{T}, x) \\ &= m \circ (g \circ \pi_{G}, \mathrm{id}_{G}) \circ x\end{align*}
for every x \in G(T). This implies that l_{g} = m \circ (g \circ \pi_{G}, \mathrm{id}_{G}).
Of course, it is quite easy to define l_{g} : G \rightarrow G as the S-scheme map given by this formula, but without understanding all these functorial descriptions, it seems difficult to prove something like following:
Theorem. Let G be an S-group. Given g, g' \in G(S), we have l_{g \cdot g'} = l_{g} \circ l_{g'} : G \rightarrow G.
Proof. Fix any S-scheme T. For each x \in G(T), we have \begin{align*}l_{g \cdot g'} \circ x &= l_{g \cdot g', T}(x) \\ &= \pi_{T}^{*}(g \cdot g') \cdot x \\ &= \pi_{T}^{*}(g) \cdot \pi_{T}^{*}(g') \cdot x \\ &= l_{g,T}(l_{g',T}(x)) \\ &= l_{g} \circ (l_{g',T}(x)) \\ &= l_{g} \circ (l_{g'} \circ x) \\ &= (l_{g} \circ l_{g'}) \circ x.\end{align*}
Hence, take T = G and x = \mathrm{id}_{G} in the above computation to finish the proof. \Box
No comments:
Post a Comment